1,692 research outputs found

    Ramond-Ramond Cohomology and O(D,D) T-duality

    Full text link
    In the name of supersymmetric double field theory, superstring effective actions can be reformulated into simple forms. They feature a pair of vielbeins corresponding to the same spacetime metric, and hence enjoy double local Lorentz symmetries. In a manifestly covariant manner --with regard to O(D,D) T-duality, diffeomorphism, B-field gauge symmetry and the pair of local Lorentz symmetries-- we incorporate R-R potentials into double field theory. We take them as a single object which is in a bi-fundamental spinorial representation of the double Lorentz groups. We identify cohomological structure relevant to the field strength. A priori, the R-R sector as well as all the fermions are O(D,D) singlet. Yet, gauge fixing the two vielbeins equal to each other modifies the O(D,D) transformation rule to call for a compensating local Lorentz rotation, such that the R-R potential may turn into an O(D,D) spinor and T-duality can flip the chirality exchanging type IIA and IIB supergravities.Comment: 1+37 pages, no figure; Structure reorganized, References added, To appear in JHEP. cf. Gong Show of Strings 2012 (http://wwwth.mpp.mpg.de/members/strings/strings2012/strings_files/program/Talks/Thursday/Gongshow/Lee.pdf

    Application of nanomaterials in two-terminal resistive-switching memory devices

    Get PDF
    Nanometer materials have been attracting strong attention due to their interesting structure and properties. Many important practical applications have been demonstrated for nanometer materials based on their unique properties. This article provides a review on the fabrication, electrical characterization, and memory application of two-terminal resistive-switching devices using nanomaterials as the active components, including metal and semiconductor nanoparticles (NPs), nanotubes, nanowires, and graphenes. There are mainly two types of device architectures for the two-terminal devices with NPs. One has a triple-layer structure with a metal film sandwiched between two organic semiconductor layers, and the other has a single polymer film blended with NPs. These devices can be electrically switched between two states with significant different resistances, i.e. the ‘ON’ and ‘OFF’ states. These render the devices important application as two-terminal non-volatile memory devices. The electrical behavior of these devices can be affected by the materials in the active layer and the electrodes. Though the mechanism for the electrical switches has been in argument, it is generally believed that the resistive switches are related to charge storage on the NPs. Resistive switches were also observed on crossbars formed by nanotubes, nanowires, and graphene ribbons. The resistive switches are due to nanoelectromechanical behavior of the materials. The Coulombic interaction of transient charges on the nanomaterials affects the configurable gap of the crossbars, which results into significant change in current through the crossbars. These nanoelectromechanical devices can be used as fast-response and high-density memory devices as well

    Differential geometry with a projection: Application to double field theory

    Full text link
    In recent development of double field theory, as for the description of the massless sector of closed strings, the spacetime dimension is formally doubled, i.e. from D to D+D, and the T-duality is realized manifestly as a global O(D,D) rotation. In this paper, we conceive a differential geometry characterized by a O(D,D) symmetric projection, as the underlying mathematical structure of double field theory. We introduce a differential operator compatible with the projection, which, contracted with the projection, can be covariantized and may replace the ordinary derivatives in the generalized Lie derivative that generates the gauge symmetry of double field theory. We construct various gauge covariant tensors which include a scalar and a tensor carrying two O(D,D) vector indices.Comment: 1+22 pages, No figure; a previous result on 4-index tensor removed, presentation improve

    Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using Tc-99m-HMPAO

    Get PDF
    Exosomes known as nano-sized extracellular vesicles attracted recent interests due to their potential usefulness in drug delivery. Amid remarkable advances in biomedical applications of exosomes, it is crucial to understand in vivo distribution and behavior of exosomes. Here, we developed a simple method for radiolabeling of macrophage-derived exosome-mimetic nanovesicles (ENVs) with Tc-99m-HMPAO under physiologic conditions and monitored in vivo distribution of Tc-99m-HMPAO-ENVs using SPECT/CT in living mice. ENVs were produced from the mouse RAW264.7 macrophage cell line and labeled with Tc-99m-HMPAO for 1 hr incubation, followed by removal of free Tc-99m-HMPAO. SPECT/CT images were serially acquired after intravenous injection to BALB/c mouse. When ENVs were labeled with Tc-99m-HMPAO, the radiochemical purity of Tc-99m-HMPAO-ENVs was higher than 90% and the expression of exosome specific protein (CD63) did not change in Tc-99m-HMPAO-ENVs. Tc-99m-HMPAOENVs showed high serum stability (90%) which was similar to that in phosphate buffered saline until 5 hr. SPECT/CT images of the mice injected with Tc-99m-HMPAO-ENVs exhibited higher uptake in liver and no uptake in brain, whereas mice injected with Tc-99m-HMPAO showed high brain uptake until 5 hr. Our noninvasive imaging of radiolabeled-ENVs promises better understanding of the in vivo behavior of exosomes for upcoming biomedical application.114327Ysciescopu

    Classification of non-Riemannian doubled-yet-gauged spacetime

    Get PDF
    Assuming O(D,D)\mathbf{O}(D,D) covariant fields as the `fundamental' variables, Double Field Theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, (n,nˉ)(n,\bar{n}), 0n+nˉD0\leq n+\bar{n}\leq D. Upon these backgrounds, strings become chiral and anti-chiral over nn and nˉ\bar{n} directions respectively, while particles and strings are frozen over the n+nˉn+\bar{n} directions. In particular, we identify (0,0)(0,0) as Riemannian manifolds, (1,0)(1,0) as non-relativistic spacetime, (1,1)(1,1) as Gomis-Ooguri non-relativistic string, (D1,0)(D{-1},0) as ultra-relativistic Carroll geometry, and (D,0)(D,0) as Siegel's chiral string. Combined with a covariant Kaluza-Klein ansatz which we further spell, (0,1)(0,1) leads to Newton-Cartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as D=10D=10, (3,3)(3,3) may open a new scheme of the dimensional reduction from ten to four.Comment: 1+41 pages; v2) Refs added; v3) Published version; v4) Sign error in (2.51) correcte

    Network 'small-world-ness': a quantitative method for determining canonical network equivalence

    Get PDF
    Background: Many technological, biological, social, and information networks fall into the broad class of 'small-world' networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges). This semi-quantitative definition leads to a categorical distinction ('small/not-small') rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network's small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model-the Watts-Strogatz (WS) model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified. Methodology/Principal Findings: We defined a precise measure of 'small-world-ness' S based on the trade off between high local clustering and short path length. A network is now deemed a 'small-world' if S. 1-an assertion which may be tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for assigning a unique Watts-Strogatz (WS) model to any real-world network, and show analytically that the WS models associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however, inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a common limiting growth process. Conclusions/Significance: We have shown how the notion of a small-world network may be quantified. Several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing

    Incorporation of fermions into double field theory

    Get PDF
    Based on the stringy differential geometry we proposed earlier, we incorporate fermions such as gravitino and dilatino into double field theory in a manifestly covariant manner with regard to O(D,D) T-duality, diffeomorphism, one-form gauge symmetry for B-field and a pair of local Lorentz symmetries. We note that there are two kinds of fermions in double field theory: O(D,D) singlet and non-singlet which may be identified, respectively as the common and the non-common fermionic sectors in type IIA and IIB supergravities. For each kind, we construct corresponding covariant Dirac operators. Further, we derive a simple criterion for an O(D,D) rotation to flip the chirality of the O(D,D) non-singlet chiral fermions, which implies the exchange of type IIA and IIB supergravities.Comment: (v1) 1+21 pages, no figure; (v2) Refs. added, to appear in JHEP; (v3) minor change, a comment in the last section removed and Eq.(3.22) correcte

    Recombinant mussel proximal thread matrix protein promotes osteoblast cell adhesion and proliferation

    Get PDF
    Background: von Willebrand factor (VWF) is a key load bearing domain for mamalian cell adhesion by binding various macromolecular ligands in extracellular matrix such as, collagens, elastin, and glycosaminoglycans. Interestingly, vWF like domains are also commonly found in load bearing systems of marine organisms such as in underwater adhesive of mussel and sea star, and nacre of marine abalone, and play a critical load bearing function. Recently, Proximal Thread Matrix Protein1 (PTMP1) in mussel composed of two vWF type A like domains has characterized and it is known to bind both mussel collagens and mammalian collagens. Results: Here, we cloned and mass produced a recombinant PTMP1 from E. coli system after switching all the minor codons to the major codons of E. coli. Recombinant PTMP1 has an ability to enhance mouse osteoblast cell adhesion, spreading, and cell proliferation. In addition, PTMP1 showed vWF-like properties as promoting collagen expression as well as binding to collagen type I, subsequently enhanced cell viability. Consequently, we found that recombinant PTMP1 acts as a vWF domain by mediating cell adhesion, spreading, proliferation, and formation of actin cytoskeleton. Conclusions: This study suggests that both mammalian cell adhesion and marine underwater adhesion exploits a strong vWF-collagen interaction for successful wet adhesion. In addition, vWF like domains containing proteins including PTMP1 have a great potential for tissue engineering and the development of biomedical adhesives as a component for extra-cellular matrix.open1151sciescopu
    corecore